CSAW ESC 2025 REPORT

HACKCESS TEAM

BESSON Jérémy
iDeaan
Roanne, France
jeremy.besson@hackcess.org

MBENGUE Guy
gmx.Ox1
Roanne, France
guy.mbengue@hackcess.org

I. INTRODUCTION

This electronic document serves as a report on our
participation in the CSAW Embedded Security Challenge (ESC)
2025 edition. It includes detailed descriptions of our resolution
methods for the challenges we successfully addressed, and our
proposed ideas and approaches for tackling the unsolved
challenges. The final phase of CSAW ESC is structured into
three sets of challenges, with the setup utilizing a
“ChipWhisperer Nano” device and provided source codes
distributed by the organizing committee.

II. CONTEXT

A. Description of the 2™ parts

CSAW 2025 calls for using Al (deep learning and LLMs) to
automate hardware attacks and build smart defenses. Challenges
center on classic hardware threats such as SCAs and FIAs, our
team actively participated in the CSAW 2025 Embedded
Security Challenge, focusing on hardware attacks across three
distinct sets: Set 1, Set 2, and Set 3. Each set provided
progressively complex scenarios that allowed us to experiment
with side-channel and fault-injection attack and implement
defensive strategies.

B. Setup

For the hardware setup, we simply connected the
ChipWhisperer Nano to the host PC via USB and executed the
provided Jupyter notebook Setup Generic.ipynb (from the
CSAW challenge repo). The notebook automatically initializes
the scope and target, verifies the USB connection, applies the

HACKCESS — CSAW 2025

MILLOT Elisa
Tenshi.eli
Roanne, France
elisa.millot@hackcess.org

DUMAS Mathieu
Hypno
Roanne, France
mathieu.dumas@hackcess.org

default capture and trigger settings, and runs a quick test capture
allowing us to start trace acquisition immediately without
manual low-level configuration

Figure 1: ChipWhisperer Nano

For each challenge (Setl, Set2, Set3) we followed the same
procedure: connect the board and run the challenge-specific
notebook (for example, challenges/setl/gatekeeper.ipynb),
which applies the challenge’s wiring and capture parameters,
performs automated sequence runs, and saves labeled traces and
metadata.

III. RESOLVING CHALLENGES

We are going to explain how we resolve challenges set by
set.



A. Set I

This set is composed of 3 challenges: Gatekeeper (1 & 2),
Sorters Song (1 & 2) and Critical Calculation.

GateKeeperl: flag = gkl {l0glnpwn}

We tackled GateKeeper 1 by exploiting a timing side-
channel in the password verification routine. The binary
compares the input password byte-by-byte against the correct
flag, formatted as gkl {xxxxxxxx}, and returns a success byte
(0x01) only when the entire string matches. By sending crafted
inputs with correct prefixes and padding the unknown suffix
with dummy characters (like !), we measured the response time
for each guess at the current position. Correct characters cause
the comparison loop to run one extra iteration before failing,
resulting in consistently longer execution times; typically, a few
microseconds more than incorrect ones.

Testing: gkl{10glnpwl}.6f
Testing: gkl{10glnpwm}.6f

Testing: gkl{10glnpwn}
SUCCESS! Password found: gkl{10glnpwnn}

Figure 2: Flag gatekeperl

To ensure reliable measurements, we reset the
“ChipWhisperer Nano” target before every trial, ran 20
repetitions per character, and used the median time to filter out
noise. We iterated through lowercase letters and digits (a-z0-9)
for each of the § unknown positions, appending the longest-
timing character to our recovered flag. This systematic approach
recovered the full password gkl {I0ginpwn} without needing
fault injection, as shown in the console output where the final
success message appears after brute-forcing the last character.

GateKeeper2: No flag

We attempted to solve GateKeeper 2 using a timing side-
channel attack on its password verification. The binary
compares input byte-by-byte to the correct flag
gk2 {xxxxxxxxxxxx} and returns success only when all bytes
matches. By sending inputs with the known prefix, a guessed
character, and dummy padding, we aimed to detect longer
response times for correct guesses due to an extra comparison
iteration and the delay loop (2500 — i*125 cycles). Using a
ChipWhisperer Nano, we reset the target before each trial, ran
three repetitions per character, and used median timings to
reduce noise while testing digits and lowercase letters for all 12
unknown positions. In theory, this would recover the flag
without fault injection, with glitching as a fallback. However,
we failed to extract it; likely because timing differences were too
small or communication noise masked the signal.

Countermeasure: A simple countermeasure would be to
implement a constant time comparison, ensuring the verification

routine always executes the same number of operations
regardless of where the mismatch occurs.

SorterSong: no flag

We attempted to recover the flag but were not successful, and
here is our deduction on how to do it:

Attack type: Timing attack

The Sorters Song challenge exploits a timing leakage in an
insertion-sort routine. The 'c' (for arrl) and 'd" (for arr2)
commands sort modified arrays, and the execution time
depends on the number of inversions or shifts required to insert
a new element. This behavior allows an attacker to infer the
relative position of elements in the sorted array.

B. Set2

This set is composed of 3 challenges: Dark Gatekeeper,
Ghost Blood and HyperSpace Jump Drive.

Dark GateKeeper: flag = ESC{J0It Th3 G473}

For the Dark Gatekeeper challenge, we performed a
straightforward, iterative power-analysis attack to recover a 12-
character password. The script tests each password position by
sending chosen inputs to the device over SimpleSerial, capturing
power traces with the ChipWhisperer Nano, and comparing
each trace to a reference trace. The selection metric is the sum
of absolute differences between traces and the character that
maximizes this difference is chosen for the current position. We
initially tested the alphanumeric set (0-9, A-Z, a-z) without
success; after reverse-engineering:

F7N4>qp14c7e!*

Figure 3: Flag Dark gatekeeper



We discovered two additional characters (> and !) and added
them to the candidate set. Using the expanded alphabet the
attack succeeded, and we recovered the flag who was:
ESC{JOIt_Th3_G473}.

Position 6: ‘p" (diff:
Clé actuelle: 7N4>qp
Position 7: 1" (diff:
Clé actuelle: 7N4>qgpl
Position 7: "1° (diff:
Clé actuelle: 7N4>qpl
Position 8: ‘4" (diff:
Clé actuelle: 7N4>qpl4d
Position 8: 4" (diff: 677.46484375)

.80859375)

.94140625)

.94140625)

.46484375)

Clé actuelle:

7N4>qpl4
(diff: 675.95703125)
7N4>qpl4c

(diff: 675.95703125)
7N4>qpl4c

(diff: 674.5)

Position 9: ‘c’
Clé actuelle:
Position 9: ‘c”
Clé actuelle:
Position 10: 7"
Clé actuelle: 7N4>qpl4c7

Position 10: '7° (diff: 674.5)

Clé actuelle: 7N4>qpl4c7

Position 11: '@" (diff: 670.33203125)
Clé actuelle: 7N4>qp14c70©

Position 11: '@" (diff: 670.33203125)
Clé actuelle: 7N4>qpl4c70©

Position 12: "!" (diff: 655.2421875)
Clé actuelle: 7N4>qp14c70!

Mot de passe trouvé: 7N4>qpl4c70!
Réponse final ESC{Jelt_Th3_G473}
Position 12: "!* (diff: 655.2421875)
Clé actuelle: 7N4>qp14c70!

Mot de passe trouvé: 7N4>qpl4c70!
Réponse finale: ESC{JOlt_Th3_G473}

Figure 4:Test of keys positions

Countermeasure: The shuffling (random reordering of internal
operations) would have significantly disrupted our position-by-
position attack. By randomly changing the order in which each
byte of the password is processed, the power consumption points

associated with a given position no longer consistently appear at
the same time in the traces. Concretely, shuffling introduces
desynchronization that forces the attacker either to precisely
realize every trace or to collect a much larger number of
recordings to recover correlations.

HyperSpace Jump Drive: flag = ESC{21hYP35TrEEt}

We tackled the HyperspaceJumpDrive challenge, which
involved performing a Differential Power Analysis (DPA)
attack to recover a 12-byte secret from a cryptographic device.
The challenge provided access to a target device that responded
to commands and leaked power consumption traces during
internal operations.

We began by sending the 'p' command with all possible 1-
byte inputs (0-255), capturing the corresponding power traces.
These traces reflect the internal computation influenced by the
secret. Our hypothesis was that the device performed a XOR
operation between the input and the secret, and that the
resulting Hamming weight affected power consumption.

Using this, we divided each trace into 12 segments—one for
each byte of the secret—and computed the correlation between
the Hamming weights of guessed intermediate values and the
actual power traces. For each byte position, we selected the
guess with the highest correlation, effectively revealing the
secret byte-by-byte.

Capturé 256 traces

Octet
Octet
Octet 1:
Octet
Octet 2:
Octet
Octet
Octet 4:
Octet 4: 3
Octet
Octet
Octet
Octet
(tlade
Octet
Octet
Octet
Octet
Octet
Octet

[200, 22, 227, 165, 34, 39, 199, 99, 98, 123, 118]

Octet 11: 118 (corr: 8.278)

9, 99, 98, 123, 118]

Figure 5: Flag HyperSpace Jump Drive

After reconstructing the 12-byte secret into three 32-bit integers
(little-endian format), we sent them back to the device using
the 'a' command. The device responded with the flag: flag =
ESC{21hYP35TrEEt}



Capturé 256 traces
Octet 9:
Octet €
Octet
Octet
Octet
Octet
Octet
Octet 3:
Octet
Octet 4: 3
Octet
Octet
Octet
Octet

Octet 11:
Octets du

Octet 11: 1
Octets du

21hYP35TrEEL}

Figure 6: List of positions

C. Set3
This is the last set of challenges of CSAW ESC 2025

For the last challenge, we made several attempts to solve it, but
we couldn’t find any possible solution. We analyzed different
approaches, yet none of them led to a successful result.

IV. CONCLUSION

In conclusion, throughout this month of challenges, we have
significantly enhanced our skills in cybersecurity and logical
thinking. This experience has been a valuable opportunity for
growth and learning.



